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Taut String with Viscous Damper

Taut string model:

* Neglects flexural stiffness: “kink” at damper
* Neglects sagged profile, axial extensibility
 Reasonable approximation in many cases




“Universal Estimation Curve”
(Pacheco, Fujino, and Sulekh 1993)

 |dentified numerically

 Relates modal damping ratios to viscous damper coefficient

« Useful in damper design for stay cables




Analytical Solution for Taut String
(Krenk 2000, Main and Jones 2002)

« PDE over two segments: my =Ty"

« Separation of variables: y(x,t) =Y (x)e"*
 BC’s and continuity: y(0)=0, y(L)=0, y(x')=y(x)
* Force balance at damper: TLY' (X)) —y'(x)]=cy(x,)
=» Transcendental equation for eigenfrequencies:
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Complex-Valued Eigenfrequencies

Real part: damped frequency
Imaginary part: decay rate
Damping ratio: ¢ = Im[w]/|o)

Locus in complex plane: /\/\
1 “clamped” limit
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Asymptotic Approximations

Complex-valued frequency increment: Ao, =, —w,,
(assumed small)

Asymptotic approximation.
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Influence of Bushings at Anchorage

ANCHORAGE BOX

ANCHOR HEAD
GROUT CAP




Bushing Removal: Stay with Damper

Fred Hartman Bridge
(Houston, Texas)




Analytical Model: Damper and Bushing

Cable: taut string my =Ty"
Damper: linear dashpot TIY' (X)) -y (x)]=cy(x,)
Bushing: linear spring TIY' (%) =y (% )] =ky(x,)
Boundary conditions, continuity at damper

=» Transcendental equation for complex eigenfrequencies
— Efficient iterative solution scheme
— EXxplicit asymptotic approximate solution
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Decay Rate, Im[Aw,]

Complex-Valued Eigenfrequencies

- Bushing Only

Asymptotic:

Exact:
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Generalization of “Universal Curve”

eff

o Effective damper location: & :%

C
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e Generalized “universal curve”:

Effective Damper Location: “Universal Curve:
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Effects of Bushing Stiffness

Reduction of % leads to:
* Reduction of attainable damping ratios:

é/opt ~£X§ff
"2 L

 Increase of optimal damper coefficient:
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Influence of Bending Stiffness

 Tensioned beam with viscous damper:

Pinned | | nondimensional
supports: : , ‘ parameter:
TL?
El

7/:

Clamped
supports: ! most stay cables:

10 < ¥ <600

* PDE over two segments: Ely"" —Ty"+my =0
 Force balance at damper: EITY"(x.)—y"(x)]=cy(x.)
 Boundary conditions, continuity at damper

=» Transcendental equations for complex eigenfrequencies
— Efficient iterative solution schemes
— EXxplicit asymptotic approximate solutions




Asymptotic Approximations

Same form as for taut string!
ic/c™
AO,, ——
1+ic/cr

Pinned supports: Clamped supports:
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Re[Aw, ]/ Aw,, Re[Aw, ]/ Aw,,

Expressions for Ao, and ¢™ depend on support conditions

n




Evolution of “Universal Curve”

Shifting of curve depends on support conditions:

Pinned supports: Clamped supports:




Optimal Damping Ratios

e Larger frequency shifts for pinned supports

=» larger damping

Pinned supports:
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Optimal Damper Coefficient

Pinned supports: Clamped supports:

« Significant increases over “taut string” values
(currently used in design)

 Much stronger increase for clamped supports
e Within 20% of taut string values for yx /L >10




Damper Nonlinearities

Friction/Viscous Damper: Power-Law Damper:

Fy(v) = F,sgn(v) +c-v F, (v) =c|v” sgn(v)

F, | / Fy !




Equivalent Viscous Solutions

« Compute coefficient of “equivalent viscous damper” based

on energy dissipation:

AW
Co=— 0
0 ralw

* Equivalent viscous coefficient depends on frequency of
oscillation » and amplitude at damper o

Friction/Viscous Damper Power-Law Damper

_4k . Cy = C(@a)”™ T ()
T

o

2 T(Ll+j/2)

where f(5)= Jz T(BI2+ B12)

e |naccurate for strong nonlinearities (e.g., frictional “stick-
slip”) = efficient numerical solution scheme developed




Friction/Viscous Damper

e Nondimensional friction/amplitude parameter:

* Influence on “Universal Curve”:
— Reductions in optimal value of viscous coefficient
— Eventually, reductions in attainable damping ratios




Square-Root Damper (4= 0.5)

 Damping independent of mode number

Advantage: damp multiple modes
 Damping is a function of peak modal amplitude, A
 Optimal amplitude can be designed (e.g., set A,,; = 1.5D)




Concluding Remarks

Importance of damper-induced frequency shifts

Persistence of semi-circular locus and general form of
“universal curve”

Optimal damper coefficient and maximum attainable
damping ratios affected by bushings, bending stiffness

Asymptotic approximations obtained for many cases of
practical interest: efficient and useful in design

“Equivalent viscous” approach used to extend linear
solutions to nonlinear dampers

— Friction can reduce optimal damper coefficient and damping ratios
—> should be accounted for in design

— Damping of square-root damper independent of mode number
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