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Organization of the Presentation

Part 1: Luca Caracoglia, Department of Civil and Environmental Engineering, 
Northeastern University, Boston, MA (22 min):

Cross-ties between stays. Mechanical system, proposed analytical method for the solution of 
the free-vibration problem. 
Case study, Fred Hartman Bridge, Houston, TX. Analysis, identification of the network 
mechanics through experimental data; suggestions, potential limitations, alternative 
solutions.

Part 2: Steven T. Hague, Chief Structural Engineer, HNTB Corporation, Kansas 
City Bridge Group, Kansas City, MO (22 min): 

Cross-ties between stays. A case study for the Bill Emerson Memorial Bridge at Cape 
Girardeau, Missouri. Application of the design procedure prescribed in current 
recommendations for stay cable design, testing and installation.

Questions, discussion
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Motivation

Susceptibility of inclined stays to wind and wind-rain induced vibration in 
long cable-stayed bridges.

Large-amplitude oscillation due to very low mechanical damping in cables. 

Countermeasures (more frequently used): 
1) Installation of mechanical dampers on “sensitive” stays: linear, nonlinear, MR 

(semi-active);
2) Transformation of the system into a cable network by means of transverse 

cross-ties;
3) Combination of the above methods;
4) Others.
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Objectives of Part 1

Three main objectives will be addressed:

Objective 1: Cross-ties and cable networks: Analytical solutions and case 

study: Fred Harman Bridge, Houston Ship Channel, Texas.

Objective 2: Suggestions for design: number of restrainers, configuration, 

frequency interval to be detuned. 

Objective 3: Introduction to alternative solutions: cable networks with the

addition of localized dampers (internal locations or connected to the deck). 
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Objective 1:

Dynamic Modeling of Cable Networks 
(Stay Systems with Cross-Ties)
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Generalized Cable Network Configuration
(Taut-String Theory) 

Simulation of each  j,p-th cable element by means of the wave equation (PDE). 

Free-vibration problem for transverse displacements, yjp(xjp,t):
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unit length 
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• Lumped 
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Extension of the Taut-String Theory 
to Cable Networks (cont’d)

The transverse motion can be postulated as yjp(xjp,t) = Re[Yjp(xjp)eiωt],
where ω is a complex frequency (from PDE’s to ODE’s)
(NB: complex frequency is introduced when dampers are also present; otherwise  real)
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Algebraic system to be solved by a set of 
equilibrium, compatibility and continuity equations

SФ=0 (e-value problem)

Unknown amplitudes Aj,p and Bj,p (real modes if only restrainers)
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F. Hartman – General View F. H. – Cross-ties 

Long-term Monitoring 
on the Fred Hartman Bridge (Houston, TX)

Twin-deck cable stayed bridge, central span 380m, side spans of 147m

Fred Hartman cross-ties: “A-line” side span network: 12 stays, 3 cross-ties (original 
configuration)

“A-line”
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Cable Network Analysis

Study of the current configuration of the “A-line” twelve-stay three-tie network, Fred 
Hartman Bridge, Houston, Texas

Fred Hartman Bridge - Side Span Unit (A-line)
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Example of Global and Localized Modes

0 0.2 0.4 0.6 0.8 1

Free-vibration mode N5; ωN5=2.37 Hz

Normalized abscissa

Localized Mode 

Fred Hartman Bridge, current configuration, side span (“A-line”) network: 12 stays, 3 cross-ties

0 0.2 0.4 0.6 0.8 1

Free-vibration mode N1 - ωN1=0.93 Hz

Normalized abscissa

Global Mode 
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Observations on the Network Performance 

Global modes (e.g., 1-4): 
Contribution from all network elements; 

Frequency increment with respect to individual stays;

Large modal mass (more input wind energy is required).

Localized modes (e.g., 5-29): 
Contribution from internal elements of the network only; 

High number of solutions (plateau); 

Low modal mass (susceptible to vibration, if the location of the plateau is 
unfavorable); 

“No” frequency increment with respect to individual stays.

Both cases apply to in-plane vibration only. Out-of-plane?
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Comparison of the Proposed Model
with Experimental Observations

Fred Hartman Bridge -“A-line” side span. 

Acceleration Power Spectral Density (in-plane) recorded on stays AS1, AS3, AS5, AS9 
(record H02236) and predicted network frequencies (solid, dashed and dotted lines). 

(a) 0.5 to 1.0 Hz, (b) 1.0 to 1.5 Hz, (c) 2.0 to 2.75 Hz.
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Objective 2:
Optimization of a Cable Network

(In-plane Modes 
and Absence of Dampers)
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Optimization of “In-Plane” Cable Networks

Two aspects need to be considered:
1. Characteristics of the external action to be suppressed (performance)
2. Expected forces/stresses on the secondary system (cross-ties)

First Aspect:

Number and location of restrainers (configuration)

Fundamental frequency of a 150m inclined stay in the range of 0.5 to 0.7Hz

Frequency interval of significance for wind and wind-rain vibration (from full-
scale measurements on the Fred Hartman Bridge): 0 to 3 Hz

Second Aspect:

Geometric and physical characteristics of the wire ropes and anchorages
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In-Plane Networks - Parametric Study
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7 Cases were analyzed (variable number of elements between AS7 and AS9):

s=0 (two restrainers), s=15,30,58,72 (m) s=44 (existing network)

s=88 (2 restrainers with extension to ground of Restrainer 3) 

Variable location of central Restrainer 2, coord. s

Extension to ground

Original (existing) configuration

Hartman Bridge 
(“A-line” - Side Span)
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Optimization of Cable Networks (cont’d) :

Guidelines for Network Performance
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Balance between global (frequency increment) and localized modes;
Favorable location of the “first plateau” (first set of localized modes);
Limit the extension of the “first plateau” to reduce the number of these solutions.

Two restrainers are necessary on the Hartman Bridge (Caracoglia and Jones, 2005)

Modal ForcesBalance between 
global/localized modes

Attention to generalized modal forces (e.g., non-symmetric tie configurations).



FWHA Wind Induced Vibration of Cable Stay Bridges Workshop, St. Louis, MO, April 25-27 2006 18

Objective 3:

Introduction to Alternative Solutions
(Cable Network with the Addition of 

Discrete Dampers)
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Optimization of “Damped” Cable Networks

Introduction:

Adding damping may be desirable (cross-ties incapable of direct energy dissipation).

Severe but rare events can induce significant  vibration.

Dampers can be connected to the deck (Caracoglia and Jones, 2003 and 2006) or 
between two stays (Caracoglia and Jones, 2004).

Idea (look at the problem from the point of view of the designer):
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Dampers installed in 
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connected to the deck (external)
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Dampers at internal locations, 
replacing “traditional” cross-ties 
(Internal portions of the network 

are removed) 

Hartman Bridge (“A-line” - Side Span) Hartman Bridge (“A-line” - Side Span)
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Example: Cable Network with 
One External Damper
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Concluding Remarks (Part 1)

Modeling of cable networks (systems of stays and cross-ties) through linear wave-
equation. Validation through the study of an existing system.

Analyses confirm the efficacy of the cross-ties for suppression of in-plane stay 
vibration (frequency and modal mass increment; no direct dissipation). 

Design and optimization guidelines derived from the study of the existing system.

Generalization to broad range of cases is difficult (complexity of the system, 
asymptotic design curves are seldom derivable).

Alternative solutions (dampers and cross-ties). Introduction.
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