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Cable stayed bridges : Ever longer spans
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Even If these
bridges are
« cable stayed »

The stays
are
generally
Nnot
highlighted

Low technical
content ?
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When length of cables increases,
their excitability increases too.
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C518 The balance of drag
force for a 900m span

cables \

the
pylon

the
deck
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Therefore
reducing the
drag on stays
becomes one

major concern
for very large
cable stayed
bridges
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When designing the cable system,
one can act on size and shape




ST
~ Why does the best shape, from the

aerodynamic point of view, usually
be the circular cylinder ?

Because it iIs symmetrical :
Smaller risk of galloping

No drag force change with wind direction
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The first sheathing
Improvements that were
proposed against RWIV

Increased the drag forces

Higashi-Kobe bridge Yuge bridge



18

Surface indentation : the
Japanese way

The Initial idea came from aerodynamicists :

e The shark-skin principle : reducing the forces
by a surface processing

e The drag force crisis on circular cylinders can be attained
with lower wind speed
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Drag crisis is well
documented for cylinders
and other shapes
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Drag crisis for cylinders depends
on the roughness of the surface
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roughness of the surface

ing uni
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The best solution was found as a
non uniform indentation
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The supercritical Cd value was not too much increased

The critical state appeared for a relatively low wind
speed, 12 m/s

After Yamada
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Spiraled wires

The initial idea came from experience :

e Another 2 dimensions excitation, the vortex shedding,

IS easily suppressed when the birth of vortexes iIs

decorrelated along the line like structure.

e Spirals are commonly used on cylinders for this purpose
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The helical strakes are used on
stacks, submarine risers, ...

However, they do increase the drag forces
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The i1dea was to design a circular
sheathing with a minimum strake

*\Wire diameter

Parameters :  "Helical step
*Wire shape



le futur en construction

This design was made for the
stays of the Normandie bridge

Encasing on the actual case

Definitive case
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The RWIV was first reproduced In
a large climatic wind tunnel
on models equipped with
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Afterwards
the same parametric conditions
were applied for various wire sizes and steps
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As It was proved to be efficient,
the wire size was optimized to
yield the smallest drag force,

Cx=0.62
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e Tan years ago we had two
solutions at our disposal

Why was only one of both widely used afterwards ?
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Following studies : the same
kind of tests with greater size

Every time a sheathing was tested, the thickness of
the rib was reduced with great care, step by step, to
attain the minimum still efficient against RWIV.
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The sheathing were tested
against RWIV
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e And the drag forces measured




The results for smooth sheathing
showed an evolution in the RWIV
Intensity with increasing diameter
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With the same conditions the
sheathing with a double helical rib
stayed stable at any tested speed.
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CSTB  The change in drag force with
diameter was noticeable too
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It seems there Is an optimum

size of the stays for the RWIV

Sheathing diameter (m) 0.160 |0.200 |0.225 |0.250
Double helix step (m) 0.600 |0.600 [0.695 |0.780
Rib thickness (mm) 1.45 1.45 1.45 1.45

Cx value at 70 m/s 0.613 [0.605 [0.624 |0.641

For sheath diameter greater than 200mm we saw that :

e the RWIV excitation was decreasing

e the drag force coefficient was increasing
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Recent development

The monitoring of more and more in service bridges may
yield very useful information, if measurements are made
with care.

Minimum requirement : wind speed and direction, 3dof disp.
of deck, 2 dof disp. of pylon, 2dof dip. of various cables.
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Efficiency of sheath ?

fficient

a 0O 20
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Another approach

In any case, consider the stay is not responsible for the
vibration,

but the stay is dissipating, though its vibration, the energy
contained in the whole bridge structure.

The effect of any of the aerodynamic instabilities
egalloping
evortex shedding

 RWIV...
Is only to reduce the aerodynamic damping of the cables.
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Research topics

Research is now focused on
the modeling of the upper
rivulet.

The next step will be to model
the aerodynamic damping of
the stays, with respect to the
outer conditions

Wind speed and direction, rain, ice, roughness and water
repellancy of the surface...

Finally, include these model of damping of cables, with
models of damping for the deck and the pylons, in a whole
bridge calculation, compare it with monitoring data.
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Conclusion

For the new generation of very long
cable stayed bridges (span =1000 m)

e Careful design of the sheathing with regard
to drag forces and efficiency against RWIV

e Design of the bridge as a whole, cables-
deck-pylon, taking into account the
aerodynamic damping of each part

e Provide additional structural damping



